
Time Series Classification Method Based on

Longest Common Subsequence and Textual

Approximation

Abdulla-Al-Maruf

Ritsumeikan University

Kusatsu, Japan

Hung-Hsuan Huang

Ritsumeikan University

Kusatsu, Japan

Kyoji Kawagoe

Ritsumeikan University

Kusatsu, Japan

Abstract—Many symbolic representations of time series have
been proposed by researchers over past decades. However, it
is still not enough to classify time series with high accuracy in
such applications as ubiquitous systems or sensor systems. In this
paper, we propose a new symbolic representation of time series
called l-TAX to increase the accuracy of time series classification.
A time series can be represented by term sequences in l-TAX.
l-TAX is based on a document like symbolic representation of
time series called TAX. We use longest common subsequence
as our distance measure between textually approximated time
series. During time series classification, consideration of symbol
sequences increases the accuracy significantly. In our evaluation,
we have demonstrated that l-TAX is effective for classification as
well as searching time series data set.

I. INTRODUCTION

Symbolic representation based time series similarity has

drawn the attention of researchers for many years ago. The

motivation for time series symbolic representation is to include

the rich data structures and algorithms from text processing

and bioinformatics. It also includes dimension reduction meth-

ods to deal with the scalability problem. The prime goal of

all these researches are to achieve a high accuracy in time

series similarity search. Time series data are available almost

everywhere nowadays because of its usability as well as falling

price of equipments and sensors by which time series data can

be gathered easily. Thus, it is very important to achieve high

accuracy in similarity search so that it can be used in mission

critical applications confidently.

In time series similarity search technique the system main-

tains a time series database. The system searches for one

or more time series in the database comparing the stored

time series with a given query time series [1], [2], [3], [4],

[5], [6], [7], [8]. These methods work in two folds. Firstly,

time series dimension reduction is done by transforming the

time series into its features in a feature space using some

transformation functions. It improves the search efficiency

because the number of dimensions in the feature space is

usually less than the original time space. The transformation

function varies with the similarity search method. Secondly,

a distance definition (Euclidean distance, Manhattan distance,

Dynamic Time Warping etc.) is used as the similarity measure.

The string sequence based distance is also introduced as

a time series similarity metric in many researches, such as

[9], [10], [11]. In these researches, the time series data

are transformed to a set of text symbols. This creates the

opportunity to use the text retrieval algorithms for time series.

Text operations are very sensitive about assigned symbols and

symbol sequences. Time point’s features must be considered

before assigning symbols for time series to achieve good

accuracy. Consideration of symbol sequence in text retrieval

system increases the potentiality of the system.

In this paper, we propose, a new and novel method of lcs

based time series modeling using text document structure and

its symbol sequences. The significant point of the method

is to use lcs as distance definition, which is widely used in

DNA and string search. However, it is difficult to apply lcs

in time series because time series data are not a sequence of

terms, but a sequence of values over time. It is not easy to

extract terms from such time series data as in a document.

We use TAX[4] to convert a time series to a new structure,

like a text document. TAX extracts temporal terms (T-term)

from time series data and stores them like words in text

documents. Our main target application is human movement

classifications. Owing to sensor technology development and

dissemination, many time series of human movement are

available. Especially, we are considering an automated self

training system for multi-player sport activities. In this kind

of applications, it is important to classify such huge amount of

human movement data into meaningful categories dynamically

and with high accuracy. The major contribution of this paper

is that we attained the most accurate classification result over

TAX as well as the existing dominant methods, by introducing

the term sequence based time series approximations.

The paper is structured as follows: Section II shows the

problem that current method has and how term sequence

consideration increases the accuracy. Section III describes how

sequences are generated from time series. Section IV shows

evaluation of our method. Section V presents some related

works. Finally, we conclude our paper in section VI.

II. TIME SERIES SYMBOLIC REPRESENTATION

In this paper, we focus on time series classification. Our

motivation is to increase the classification accuracy. To do so,

we consider the symbol sequences in the time series symbolic

representation. In the symbolic representation, time series are
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represented by symbols. From our point of view, symbol’s

order is very important to achieve high classification accuracy.

We closely examine the method TAX[4], which uses time

series symbolic representations and does not consider term

sequences during classification. We show consideration of

term sequence in TAX increases the classification accuracy

significantly.

A. TAX

TAX is a novel method which uses existing document

retrieval models to retrieve similar time series. It represents

time series like a text document. A text document contains

series of words or terms. TAX extracts terms from time series

data, which is called T-terms and presents them in a document.

It is a bag-of-words model based method. Bag-of-words model

is widely used in natural language processing and information

retrieval. In this model, a text or document is presented as an

unordered collection of words without considering grammar

or even word order.

TAX finds the important points from the time series and use

them to construct terms. TAX considers the issue that not all

points in a time series are equally important. Some time points

carry special interests. Modern information retrieval systems

use this type of heuristics. Different terms carry different

interests to the search engines. Modern search engines are

aware about the term sequences.

B. Problem of TAX

TAX does not consider term’s sequence during its construc-

tion or retrieval phases although it uses text retrieval methods.

For example, Figure 1 (a) shows TAX approach and (b) shows

l-TAX approach. For the query, the lazy brown dog jumped

over the quick fox, TAX matches the query terms to its bag and

gets positive result because those are the same terms without

order but l-TAX checks the term sequences and finds the query

is not similar to its bag although the terms are same. In this

case, l-TAX reduces the false positives of TAX.

So, consideration of term’s sequence in TAX increases the

classification accuracy. We demonstrate it with the following

examples using synthetic and real time series.

C. Examples

In the following examples, we show how TAX fails in some

cases and how term sequence consideration can improve the

accuracy.

(1) In this example, we use synthetic time series where key

points are selected uniformly. We have two time series (O1

and O2) and a query time series (Q) as shown in Figure 2.

Our goal is to find a time series between O1 and O2, which

is most similar to Q. From observation it is clear that O2 =

Q. So, TAX must find O2 as Q’s most similar time series.

We show the key-points for all the time series using circles.

We define a set of T-terms, Tterm = {flat, up, down}. For

each key point, we assign a term from Tterm. TAX uses

term frequency and inverse document frequency(tf − idf ) to

create document vectors for all the time series. For simplicity,
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Fig. 1. Difference between TAX and l-TAX.
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Fig. 2. Example of TAX failure

we consider idf = 1. Table I shows the document vectors

by counting tf for O1, O2 and Q. It also shows the cosine

similarity among the time series and the query.

TABLE I
SIMILARITY USING TAX

Time series Term Frequency Document
vec.

Similarity
with Q

flat up down

O1 3 1 1 (3, 1, 1) 1

O2 3 1 1 (3, 1, 1) 1

Q 3 1 1 (3, 1, 1)

TAX finds both O1 and O2 are equally similar to Q. It fails

to distinguish that O1 is different from Q. It happens because

both O1 and Q contain equal numbers of same terms although

the term sequences are different for them.

Consideration of term sequence solves the problem. We

represent the time series using their terms in Table II. The

lcs length between O2 and Q is higher than O1 and Q. So,

the new method selects O2 as most similar time series to Q.

It successfully identifies that O1 has a different shape than Q
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although both of them have equal number of same terms.

TABLE II
SIMILARITY USING L-TAX

Time series Term Sequence lcs length

O1 (flat, up, flat, down, flat) 4

O2 (flat, flat, down, flat, up) 5

Q (flat, flat, down, flat, up)

(2)Figure 3 shows a more complex example than the previ-

ous one using a real time series.
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Fig. 3. Example of textual approximation(2).

In the figure, there are three time series data set like

ECG data, labeled as TS1, TS2 and TQ. The first one (TS1)

indicates normal ECG data, while the second time series (TS2)

is just the opposite (mirror view) of TS1. As they are opposite

to each other, we assume, they do not belong to same class(for

classification). The query time series (TQ) is unclassified and

same as first time series (it is the same data as TS1). Our goal

is to predict the class label of TQ by using the similarity.

Similar time series are classified under same classes. So,

the query time series’s label should be same as it’s most

similar time series. This is the nearest neighbor classification

technique [12], [13], [14], where we assign a class label to

an unlabeled time series by finding its nearest neighbor’s

class label. We assume that the key points, important points

to characterize a time series, are extracted and their feature

vectors (the difference between the previous point and the key

point, the difference between the key point and the next point)

are calculated as shown in Table III. In Figure 3, key points

are shown by circles and labeled by Knn such as K01 and

K11.

TAX applies k-means clustering method on key-points

feature vectors to assign T-terms to key points. But any

other method could be used in this purpose. To keep this

example simple, we apply some thresholds to categorize the

key points feature vectors instead of using a clustering method.

We use the uniformly selected threshold 0.01 and 0.2 to

quantize each of the vector entries. The key points get their

T-terms depending on these two thresholds. If any of the

TABLE III
EXAMPLE OF KEY-POINT FEATURE VECTOR (1)

Time series Key-point Feature vec. Tterm

TS1, TS2, TQ K01 {0.32,-0.33} TtermHH

K02 {0.12,0.31} TtermLH

K03 {0.04,0.0} TtermL0

K04 {0.054,-0.08} TtermLL

K05 {-0.04,0.01} TtermL0

vector entries absolute value is less than or equal to 0.01,

we assign ”0”. All values greater than 0.01 and less than

or equal to 0.2 get the symbol ”L”. Lastly, for all values

greater than 0.2, the symbol ”H” is assigned. For each of

the vector entries, it gets an assignment. By combining two

symbol assignments, the corresponding T-term is assigned

such as TtermLH and TtermHH . The set of the used T-term

is {TtermHH , T termLH , T termL0, T termLL, T termL0}.
After term generation, TAX uses term frequency and inverse

document frequency to calculate the document vector. We

calculate the document vector for given time series TS1, TS2

and TQ using tf − idf . For simplicity, we consider idf = 1.

The result is shown in Table IV.

TABLE IV
TAX DOCUMENT VECTORS

Time series Document vec. Similarity with TQ

TS1 (1, 1, 1, 1, 1) 1

TS2 (1, 1, 1, 1, 1) 1

TQ (1, 1, 1, 1, 1)

TQ gets equal match with TS1 and TS2 although they are

opposite to each other. The key point sequences for TS1 and

TS2 are (K01, K02, K03, K04, K05) and (K05, K04, K03,

K02, K01s). It does not make any difference in the tf-idf based

approach. So, in this case, TAX classification fails. TAX gets

equal match with two different time series, whose labels are

different. The only solution of this problem is to consider the

term sequences during similarity measure. We introduce lcs

with TAX instead of tf−idf to take the term sequences under

consideration during similarity search. The similarities among

TS1, TS2 and TQ are calculated from term sequences shown in

Table V. We use lcs length to measure the similarity between

time series. The similarity of TS1 and TQ is larger than the

similarity of TS2 and TQ, which means TS1 is more similar

to TQ than TS2. So, the predicted label for TQ is the same

label as TS1.

TABLE V
TERM SEQUENCES OF THE EXAMPLE TIME SERIES

Time Series Term Sequences (Ttermxx) Similarity
with TQ

TS1 HH , LH , L0, LL, L0 5

TS2 L0, LL, L0, LH , HH 1

TQ HH , LH , L0, LL, L0

From these examples, it is clear that consideration of term

sequences are a mandatory factor to increase the classification
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accuracy. In section III, we describe the method to represent

a time series as a sequence.

III. SEQUENCE CONSTRUCTION AND CLASSIFICATION

In this section, we explain the methods to achieve the term

sequences from time series. The construction phase starts by

selecting time series key points that characterize the source

time series. These key points are the training key points.

Considering the key-point’s surrounded points, we calculate

the key point feature vector for all key points. Then these

key-point feature vectors are clustered. Each cluster works as

a term and identified by a symbol. For each of the time series,

we construct a term-sequence by considering the key points

appearing order in the original time series. During retrieval

phase, for the query time series, we calculate the key points

and key-point’s feature vectors using the same procedure. Then

these vectors are assigned to the nearest clusters. Now, the

clusters contain both training key points and query key points.

We construct another term sequence after the assignment by

considering the key point’s appearing order in the query time

series. We find the most similar time series’s class from the

training time series comparing the query sequence against

training sequences using longest common subsequence. In next

section, we show the algorithm and describe the process in

detail.

A. Algorithm Overview

The whole process is divided in training and search phase.

Algorithm 1 and 2 show the training and retrieval phase

respectively. Algorithm 1 runs only once during the training

phase. If new training data are available only then it runs again.

Algorithm 2 runs for every query time series.

1) Key-point Detection: l-TAX uses two different tech-

niques to extract key points from the original time series. The

first method is to take the absolute value of 2nd difference

of the original time series. The second method is to use the

absolute value of the difference between P-points weighted

moving average and the original time series data. These filtered

values are considered as key point candidates. Two predefined

thresholds ǫ1 and ǫ2 are used to find the key points for first

and second method respectively. In both cases, if a candidate

exceeds the threshold at a time, then the value of that time

from the original time series is detected as a key point. The

final set of key points is constructed by taking the union of

these two sets of key points.

2) Key-point Features: We represent all the key points by

their feature vectors. These vectors contains key point features

by considering their surrounding points. A key point is a

point of interest among many points. So, a key point must

be influenced by its surrounding points. For each of the key

points, we take the differences between the key point and

the wf surrounding points in both sides of the key points.

wf is a predefined natural number. We take the average of

two consecutive differences and construct the feature vector

using these averages and the key points. Assume, yx is a key

point. If wf = 2, we compute the differences d1=yx − yx−1,

Algorithm 1 l-TAX Training phase

Input: dtrain: 2D Array of All training data, ǫ1:

key point threshold, ǫ2: key point threshold,

wf : neighborhood size, tnum: numbers of terms

Output: sdoc: a document that works like a

database

Variables: strain: contains the training term

sequences, key feature: contains feature vectors,

labelstrain: contains the training data class labels

1: strain ← empty array

2: key feature← empty array

3: sdoc ← empty file

4: dtest ← n data from training set as test

case

5: labelstrain ← load training class labels

6: for i = 1→ length(dtrain except dtest) do

7: key points← get key points(dtrain[i], ǫ1, ǫ2)
8: key feature[i]← get features(key points, wf)
9: end for

10: terms← get clusters(key feature, Tnum)
11: for i = 1→ length(key feature) do

12: j ← get source time series(key feature[i])
13: belongs to← get term id(terms, key feature[i])
14: Strain[j]← append(strain[j], belongs to)
15: end for

16: paremeters← optimise parameters(Strain, dtest)
17: Store paremeters,labelstrain,strain and

terms in Sdoc

d2=yx − yx−2 and d3=yx − yx+1, d4=yx − yx+2. We take the

averages, avg1 = avg(d1, d2) and avg2 = avg(d3, d4). Then,

the feature vector is constructed as (agv1, yx, avg2).

3) T-term Construction: All key points are now represented

by their feature vectors. We apply k-means to cluster these

feature vectors. The number of cluster is predefined. These

clusters work like terms. By checking the key-point feature

vectors that belongs to clusters, we can easily determine which

key-point belong to which cluster. We assign unique symbols

to all the clusters to identify them. We call these symbols

T-term id.

4) Term Sequence Construction: We use all the T-terms to

construct Term-sequence. We do it from the set of T-terms

and its belonging key points. For each key point, we find it’s

T-term id to obtain the sequence for a particular time series.

Assume that, K = {kp1, kp2, ..., kpn} is a set of key points

extracted from a time series and ordered by their appearing

time in the original time series. T = {T1, T2, ..., TN} is a

set of T-term’s ids. For, each key point from K, we find its

belonging term. The corresponding Tid from T is used to get

the term sequence, Term− sequence = {Tid,kp1
, Tid,kp2

, ...,

Tid,kpn
}. Figure 4 shows the term sequence construction.

We store the training data class labels, terms and the term

sequences in a database. In retrieval phase, we load these
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Fig. 4. Term sequence construction

values and use them to predict the class label of a unlabeled

query time series.

Algorithm 2 l-TAX Search Phase

Input: dquery: A time series, ǫ1: key point

threshold, ǫ2: key point threshold, wf :

neighborhood size

Output: predicted class label for dquery
Variable: squery: contains the query term

sequence

1: Load sdoc //Loading labelstrain, strain and

terms

2: key points← get key points(dquery, ǫ1, ǫ2)
3: key feature← get features(key points, wf)
4: for i = 1→ length(key feature) do

5: belongs to ← get nearest term id(terms,

key feature)
6: squery ← append(squery, belongs to)
7: end for

8: best lcs← −1
9: best matches time series index← −1

10: for i = 1→ length(strain) do

11: lcs← get lcs(squery, strain[i])
12: if lcs > best lcs then

13: best lcs← lcs

14: best matches time series index← i

15: end if

16: end for

17: return labelstrain[best matches time series index]

5) T-term Assignment: In retrieval phase, we load the train-

ing sequences, training data labels and clusters from database.

When a query is given, we convert the query time series

to its sequence representation using the same method as in

construction phase. We extract key points from query time

series and calculate their feature vectors. Then, we assign the

feature vectors to the nearest clusters by finding their nearest

cluster’s center. It is done using following method:

Assume that, QK = {qk1, ..., qkn} is a set of query key

points and FQK = {fQK,1, .., fQK,n} is the set of their feature

vectors. For each fQK,x ∈ FQK , we obtain a term Ty from

the training terms such that,

minimize(distance(fQK,x, center(Ty)).

We assign, the closest term Ty to the key-point feature

vector fQK,x.

6) Classification Using lcs length: Again, after query fea-

ture vector assignment, we use term sequences to prepare a

query term sequence, squery . Comparing this query sequence

with the training sequences using lcs length, we find the best

matched sequence and its class label and predict the label as

the query time series label.

Assume that, X = {x1, x2, ..., xm} is a set of term

sequences of a time series obtained during training session.

Y = {y1, y2, ..., yn} is another sequence obtained from the

query time series. Let, lcs(Xi, Yj) represents the longest

common subsequence of prefixes Xi and Yj . We find the

longest sequence as follows:

lcs(Xi, Yj) =















0 if i = 0 or j = 0

(lcs(Xi−1, Yj−1), xi) + 1 if xi = yj
longest(lcs(Xi, Yj−1),

lcs(Xi−1, Yj)) if xi 6= yj
(1)

We use dynamic programming to calculate the lcs length.

One query can get multiple nearest neighbor with same

magnitude. It is because of lcs length definition. We use whole

match to calculate the lcs length. If two symbol matches then

we increase the length by 1 otherwise 0. For this reason,

more than one sequence can get maximum lcs length with

the query. we consider all such sequence’s class labels. The

system predicts the query class that more than 50% of the best

matched sequences are labeled.

B. Algorithmic Complexity Analysis

The system is divided into two phases. In both phases the

key point detection and their feature calculation take linear

time. We maintain a map between key point feature and source

time series. It takes linear time too. During training session,

we apply k-means clustering to the feature vectors. K-means

takes O(Imnk) time, where I is the number of iterations, m is

the dimension of the feature vector, n is the number of the key

points in training data set and k is the number of terms. The

term id assignment and term sequence generation take linear

time as we keep the maps for key points to time series and

key points to clusters. In retrieval phase, the nearest cluster

center search and assignment takes O(nm) time, where n is

the number of query key points and m is the number of terms.

Longest common subsequence uses dynamic programming,

which takes polynomial time. The query sequence matches

against all training sequences. Each of the matches takes

O(nm) time, where n and m are the lengths of the sequences.
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TABLE VI
ACCURACY RATIO OF DIFFERENT TIME SERIES CLASSIFICATION METHODS

Dataset Euclidean
[15]

DTW
[16]

ODTW
[16]

OTWED
[17]

TAX l-TAX Remarks for l-TAX

No.
of T-
terms

Avg. No. of
Key-points per
Training data

Avg. No. of
Key-points per
Test data

Two Patterns 91.00 100.0 99.85 99.90 80.20 99.88 85 14.00 14.00
Wafer 99.50 98.00 99.50 99.60 98.70 98.46 90 15.70 15.67
Gun-point 91.30 90.70 91.30 98.70 94.70 98.00 100 14.50 14.36
CBF 85.20 99.70 99.60 99.30 96.30 97.78 45 24.80 24.69
Fish 78.30 73.30 76.70 94.90 84.60 94.29 80 131.6 131.4
Synthetic Cntl 88.00 99.30 98.30 97.70 90.33 93.67 75 5.70 5.80
Beef 53.30 50.00 53.30 46.70 80.00 93.33 55 23.30 23.70
Trace 76.00 100.0 99.00 95.00 90.00 93.00 45 25.80 25.74
Coffee 75.00 82.10 82.10 78.60 92.86 92.86 30 16.00 16.00
Yoga 83.00 83.60 84.50 87.00 84.40 90.30 130 159.9 160.0
ECG 88.00 77.00 88.00 90.00 86.00 90.00 28 8.90 9.00
Swedish Leaf 78.70 79.00 84.30 89.80 79.80 86.72 70 36.10 36.21
OliveOil 86.70 86.70 83.30 83.30 83.30 86.67 100 46.90 46.80
Lighting-2 75.40 86.90 86.90 78.70 77.00 85.25 95 52.50 53.43
Face(four) 78.40 83.00 88.60 96.60 58.00 80.68 85 138.9 136.28
OSU Leaf 51.70 59.10 61.60 75.20 69.80 74.38 65 154.7 154.77
Face(all) 71.40 80.80 80.80 81.10 70.70 72.96 850 33.40 32.92
Lighting-7 57.50 72.60 71.20 75.30 64.40 67.12 90 27.50 27.38
50 Words 63.10 69.00 75.80 81.30 42.90 60.44 40 64.60 64.45
Adiac 61.10 60.40 60.90 62.40 57.30 59.85 90 48.60 48.74

IV. EVALUATION

In this section, we evaluate the method to show the ef-

fectiveness. We use the method to classify data, where the

results of the classification are known. This method has been

used extensively in previous researches [16], [18], [12], [19],

[20]. We compare l-TAX against other existing methods like

Euclidean [7], DTW [16], TAX, OTWED [17].

A. Experimental Setup

1) Data sets: We collect our test data sets from UCR Time

Series Data Mining Archive [16]. It contains different data sets

with varying lengths and different class cardinalities. These

data sets are taken form different sources like motion capture,

word recognition, electrocardiogram etc. Data sets are divided

in training and test parts. In both cases, the class labels are

given. We train the system using the training data. Then for

each test data, the system predicts the class label depending

on the similarity with the training data.

2) Parameter settings and Accuracy measure: We use the

training data set to optimize parameter settings especially the

number of T-terms. K-means clustering uses random center

selection. To get the same cluster every time, we fix the

random seed to 1. So, for a particular number of terms, we

always get same clusters for same key point feature vectors.

We select the key point parameters ǫ1 and ǫ2 in such a way, so

that we get variable numbers (5%, 10%, 15%) of key points

for different data sets. We set neighborhood parameter, wf =

10. Key point thresholds and neighborhood parameter settings

are same as TAX. For term number, we try different values

on training data and keep the best one for which the accuracy

is maximum.

For our classification evaluations, we define accuracy as:

Accuracy =
|KNN(q) ∩ std set(q)|

K
× 100% (2)

where KNN(q), is the K nearest neighbor for the query,

found by the method. std set(q), is the correct class for the

query. In our evaluation, we use K = 1.

TABLE VII
AVERAGE ACCURACY OF DIFFERENT TIME SERIES CLASSIFICATION

METHODS

Euclidean
[15]

DTW
[16]

ODTW
[16]

OTWED TAX
[17]

l-
TAX

Avg. Accuracy 76.63 81.56 83.28 85.56 79.07 85.78
Std. Div. 13.41 14.55 13.63 13.86 14.68 12.50

B. Results

Table VI shows the classification accuracy comparison with

other existing methods. l-TAX performs significantly well

than other methods. Compare to TAX, l-TAX increases the

accuracy for all data sets. Although in case of Wafer data

set, it decreases little bit but that is very insignificant. For

Face (four) and 50 Words data sets, l-TAX accuracies increase

by 29% and 16.22% respectively. TAX performance was very

poor for these data sets. l-TAX achieves its maximum accuracy

of 99.88% for Two Pattern data set. Other methods also

performed well for this data set except TAX. In this case,

l-TAX increases the accuracy by 19.68% compare to TAX. l-

TAX performs extremely well for some data sets where other

methods fail to achieve a higher accuracy. For example, l-

TAX gets more than 90% accuracy for Beef and Coffee data

sets. Except TAX, all other methods get an accuracy of below

80%. Our l-TAX classification accuracy level seems stable on

various kinds of time series.
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Fig. 5. A Two Pattern data query and the best matched time series by l-TAX

Table VII shows the average accuracies and standard devi-

ations of some methods. Average accuracy and standard devi-

ation shows a method’s stability and applicability on different

domains. The average accuracies of Euclidean, ODTW, DTW,

TAX, OTWED, l-TAX methods are 76.63%, 83.28%, 81.56%,

79.07%, 85.56%, 85.78% respectively. The average accuracy

of l-TAX has increased by 6.51% compare to TAX. It gets

higher average accuracy than the other methods too. l-TAX

ended up with 85.78% accuracy. The average accuracy of l-

TAX has increased by 6.51% compare to TAX. The standard

deviation of Euclidean, ODTW, DTW, TAX, OTWED, l-

TAX methods are 13.41, 13.63, 14.55, 14.68, 13.86, 12.50

respectively. l-TAX gets the minimum standard deviation of

12.5, which is 14.68 for TAX. High accuracy and less stan-

dard deviation shows that l-TAX is stable and applicable on

different data sets.

In Figure 5, we show a case of Two Pattern data set, where

it shows a query and its closest time series found by l-TAX.

Both the query and matched data are from same class although

they look different by observation. We marked the key points

using circles for both the time series. TAX uses the same key

points and feature vectors for the same data. But TAX accuracy

is 19.68% lower than l-TAX for this data set because it does

not consider the key point’s term sequences, which is very

important feature for time series classification and search. l-

TAX considers the term sequences and performs reasonably

well.

From the average accuracy and standard deviation view

point, l-TAX outperforms DTW, ODTW and OTWED. These

methods use time warp as their base. Our method performs

significantly well than Euclidean [15]. Euclidean [15] uses

euclidean distance to calculate the similarity. l-TAX has got

the highest average accuracy and lowest standard deviation

than other methods, which uses both time series symbolic

representations or non symbolic representations to classify

data.

V. RELATED WORK

Many techniques have been invented to find the similarity

between two time series [1], [2], [3], [5], [6], [7], [8]. Non

symbolic similarity search method like Euclidean distance

sums the euclidean distance between two values to correspond-

ing time points. Feature space transformation such as DFT

and DWT are the most typical method for similarity search.

These feature transformations can be applied when there is

no knowledge on internal models. However, they can not be

applied effectively when time series data are an output from

a certain model like our model-based dynamical systems.

Textual approximation based time series similarities are also

investigated although most of them are kinds of symbolic

approximation methods. One of the great works was done

by H. Shatkay and S. B. Zdonik in [21]. They proposed a

general approximate data representation for time series with

development of the breaking algorithm. Another symbolic

approximation based method is called SAX [22], [7]. SAX

is one of the novel symbolic aggregate approximation method

to approximate time series with a sequence of symbols. Other

methods including some of these existing approximation are

based on the value-to-textual conversion of time series, which

means that a value at a time is approximated with some

predefined symbols calculated from their value [23].

Many methods such as ERP[31] or EDR [18] are proposed,

which uses edit distance as their base. A Longest Common

Subsequence based work is presented in citeicde:trajectories.

Recently another method that combines LCS and EDR is

presented in [19]. AMSS [32] is another longest common

subsequence based technique that uses their own distance

definition to find the distance between two symbols. The other

textual approximation methods including [33], [34], [35], [36],

[37] are based on application domain dependent symbolic

representation of time series from much knowledge on features

of time series.

A survey of longest common subsequence algorithms is

shown in the paper [24]. The most important lcs methods are

described in books on text algorithms [25], [26], [27] and on

molecular biology [28], [29], [30].

A novel dissimilarity method between two time sequences

is introduced in the paper [9]. In the proposed method, the

time series are converted to SAX [7] sequence and then used

the dissimilarity method. A new measure of distance between

two time series symbolic sequences is proposed in [11]. Paper

[10] introduces an extended version of longest common sub-

sequences. It considers not only the longest common sub-

sequences but also the 2nd longest subsequence, 3rd longest

sub-sequences and so on to find the time series similarity.

VI. CONCLUSIONS

In this paper, we have proposed a time series approxi-

mation representation for time series classification, called l-

TAX, using the text document structure and longest common

subsequence. The main idea of the proposed l-TAX method

is to construct a set of temporal terms, called T-terms, from a

large amount of time series database and use their sequences
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to make string sequence to find the time series similarity using

Longest Common Subsequence. With the l-TAX, a user can

obtain the desirable time series data set with higher accuracy.

From the experiments, we have showed that our l-TAX is

effective and can be used for a large amount of time series

classification.

During training, we have conducted our experiment with

different parameter values. Due to page limitation, in this

paper, we show the optimized values for which our method

performs well. With more proper parameter settings, l-TAX

can even get better results than the one that has shown here.

As part of our future work, we plan to evaluate l-TAX

based on computation time, explore additional features for

automatic parameter selection and to develop pruning and

indexing techniques for faster classification.
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